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THE INTERACTION OF THERMAL RADIATION WITH 

FREE CONVECTION HEAT TRANSFER 
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(Received 12 March 1964 and infinal revisedform 9 March 1966) 

Abstract-The dimensionless boundary-layer equations describing free convection of a radiation absorb- 
ing-emitting fluid illustrates that the problem may be treated as a singular perturbation problem. Specifc- 
ally, this treatment applies if the parameter characterizing the relative importance of conduction versus 
radiation heat transfer within the fluid is small. For several typical gases this is shown to be the case. The 
singular perturbation problem is formulated for laminar free convection of a gray gas along a vertical, 
black, isothermal plate. An illustrative solution of the resulting equations is presented for second-order 

interactions between radiation and free convection. 

&th 

; 
s: 
Gr, 
k, 
N, 
Nu, 
pr, 
43 
4 
T, 
AT, 
U, 

V, 

X, 

Y, 

NOMENCLATURE K, 

specific heat at constant pressure ; 5% 

exponential integral, 8. 
8 W) 

~$‘-‘exp(-~/~)d~; @y 
0 V, 

dimensionless stream function ; 5, 

fl&PrN) ; PY 
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klc/4a T,” ; 
Nusselt number, q,,x/k(T,,, - T,); Subscripts 

Prandtl number, v/cl; conduction ; 

local heat-transfer rate per unit area ; radiation ; 

dummy variable of integration ; W, 

absolute temperature ; 6, 

L - Tm; a, 

velocity component in x-direction; 
velocity component in y-direction ; 
coordinate along plate surface ; 
coordinate normal to plate surface. 

CONVECTION phenomena involving fluids which 
absorb and emit thermal radiation is an area 
which has recently attracted considerable atten- 
tion with respect to forced convection. There 
have not, however, been any studies made 
concerning combined free convection and radia- 
tion heat transfer. Since radiation interaction 

Greek symbols 
a, thermal diffusivity, k/PC,,; 

B, coefficient of thermal expansion ; 

r, ccc - lYuL - 111*; 

plate surface ; 
outer edge of boundary layer ; 
ambient. 
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is most pronounced when convection heat 
transfer is small, it would appear that radiation 
could play a significant role in free convection 
problems involving absorbing-emitting fluids. 

The present investigation considers laminar 
free convection of an absorbinggemitting fluid 
along a vertical flat plate. The method of solution 
is patterned after the singular perturbation 
solution presented in references [l] and [2] 
for forced convection. A general formulation 
of the singular perturbation problem is pre- 
sented, and an illustrative solution of the 
resulting equations, applicable for small values 
of the convection-radiation interaction para- 
meter, is given. The purpose of the investigation 
is primarily to illustrate how such interaction 
effects occur. Thus, a number of simplifying 
assumptions, such as a black plate and a gray 
fluid, are employed. 

- % = 2uT,4E2(z) 

+ 20 i T4(x, t) El(jz - tl) dt (3) 

- 4aT4(x, z) 

where r = KY is the optical transverse coordinate. 

BASIC EQUATIONS 

The theoretical model and coordinate system 
are illustrated in Fig. 1 for a heated plate, while 
for a cooled plate the y-coordinate is reversed. 
Laminar free convection of a constant-property 
fluid is assumed, and the surface temperature 
of the plate is taken to be uniform. In addition, 
it is assumed that the plate surface is black 
and that the absorbing-emitting fluid is gray 
and nonscattering. 

It will be convenient to recast equations (1) 
and (2) in dimensionless form, and dimensionless 
quantities will be defined as 

In terms of the stream function +, defined by 

a+ 

“=G 

a+ 
O= -ax 

the boundary-layer forms of the momentum 
and energy equations are, respectively 

T(x, Y) = LW, 7). 

For free convection the velocity component u is 
of the order 

a* av -~ 
ay axay 

- Z$ = us + gB(T - T,) (1) 

a*aT a*aT a2T 1 ah --- 
aY ax =c1z------ ax ay ay PC, ?Y (2) 

where qR denotes the radiation flux within the 
fluid in the y-direction. From [1]* 

* For fluids with an index of refraction other than unity, 
o is renlaced bv n2 CT TI 1. 

Thus 5 denotes the relative role of radiation 
to convection heat transfer. The parameter N 
is in turn a measure of the importance of 
conduction versus radiation within the fluid l-11. 
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Y 

FE. I. Physical model and coordinate system 

u = 0 C&B AT41 
and consequently 
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In terms off(t;, z), the velocity components are 

(5) 

while equations (1) and (2) transform to 

8-l 
=2Prh+J+2 - 

8, - 1 (6) 

af ae -- - 
a7 at 

+ 03,(z) + $ 04(t, t)&(lz - t()dt - 20”(&z). 

(7) 

Inspection of equations (6) and (7) shows that 
the highest derivative in each equation is 
multiplied by the parameter N, and if this 
parameter is small, the problem reduces to a 
singular perturbation problem. 

o.ool I 
0 200 400 600 800 I 000 
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FIG. 2. Values of N for carbon dioxide, water vapor and 
ammonia at one atmosphere. 

To gain some insight into typical magnitudes 
of N, values of N are illustrated in Fig. 2 for 
water vapor, carbon dioxide and ammonia, 
where N has been calculated using the Planck 
mean absorption coefficient. It is seen that, at 
least for these gases, the magnitude of N is 
much less than unity. A meaningful and physic- 
ally practical approach to the present problem 
would thus be to consider the limiting case 
N 4 1. 

FORMULATION FOR N < 1 

In formulating the present problem as a 
singular perturbation problem, an approxima- 
tion for N 4 1 is obtained by setting N = 0 in 
equations (4) and (5). Letting F and 0 denote 
fand 6’ for the condition N = 0, then 

aF a2F 
-5,5p=2 (8) 

aF ao L- _ 
a7 a< 

+ ,‘f 04(t, t) E,(\z - tl) dt - 204(5, 4. (9) 

With the exception of optically thick radiation 
(z % l), equation (9) cannot satisfy continuity 
of temperature at the plate surface, and an 
inner solution, which includes the highest 
derivatives, is additionally required within a thin 
region near the plate surface. This inner solution 
is also necessary in order to satisfy the no-slip 
velocity condition, although the no-slip condi- 
tion may be shown to be redundant for T 9 l.* 
Thus, since equations (8) and (9) adequately 
describe the problem for T 9 1, one is concerned 
with an inner solution for T < O(l), where T 

refers to the penetration depth of the entire 
temperature field. Furthermore, in a manner 

* For r $ 1 the problem is mathematically analogous 
to that of pure free convection for the limit Pr + 0. In this 
case the no-slip condition is not imposed when solving for 
the temperature field [3]. 
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analogous to forced 
turn implies r < O(1). 
ality, the restriction 
imposed. 

convection [l], this in 
With little loss in gener- 

= [04(1’. t) E,(t)dt = r@(<. t) E,(t) dt 
0 

Pr = O(1) will also be 
+ % [0(5. t) - O(& t)] E,(t)dt 

The present problem has thus been reduced 
to one involving inner and outer solutions, with 
equations (8) and (9) describing the outer 
solution. To apply equations (6) and (7) to the 
inner region, consider the change of variables 

= j O(& t) E,(t) dt + 0 [J(2Pr N)]. (13) 

Employing equations (12) and (13), equation 
(11) reduces to 

’ = ,,@Pk’ ’ = 1/(2:r N) 

and equations (6) and (7) become 

(10) 

(11) 

+ s 04(t, t) E,# J(2Pr N) - tl] dl - 2~4(5~ z). 
0 

With this change of variables, the highest 
derivative in both equation (10) and equation 
(11) is now of the same magnitude as the other 
terms in each equation. Furthermore. it is 
evident that these highest derivatives are of 
importance within a region of thickness 5 = 
O(1); that is. the optical thickness of the inner 
region (or boundary layer) is zg = 0 [J(2Pr N)]. 

Clearly the inner region is optically thin. 
Equation (11) may be further simplified by 
noting that with Z = O(1) 

E,[? J(2Pr N)] = I + 0 [ J(2~r IV)] 

and 

(12) 

E, [I? j(2Pr N) - tj] = E,(t) + 0 [ J(2Pr N)]. 

From this last expression, and noting that 
I3 = 0 for z > ra, one has 

1 64(&t)El[lfJ(2PrN) - tl]df 

+ Cl:, + j; 04(& t) E,(t) dt - 204(& 5). (14) 
II 

The outer region is thus described by equa- 
tions (8) and (9) and the inner region by equa- 
tions (lO)and (14). It remains to specify boundary 
and matching conditions. 

For the outer region the boundary conditions 
are 

T-+ T,. u + 0; T-cc 

or. with reference to equation (4) 

O((. cc) = 1. 
ZF(5. cc) o, 
-__ = 

(72 
115) 

For the inner region it is required that 

T= Tw. tr=r=(). .1’=0 

and noting equations (4) and (5) 

0(&o) = 0,. 3 (c.0) = ;F = 0. (16) 

General principles of asymptotic matching 
are discussed by Van Dyke [4]. For the present 
case it is sufficient to state that the inner 
solution for large ? must match the outer 
solution written in terms of the inner variable. 
Considering temperature, for example, the outer 
solution is written as O[<. Z J(2Pr N)]. and 
asymptotic matching requires that 

d(L co) = @(L 0). (17) 
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With respect to matching of the velocity com- 
ponents u and u, a similar procedure yields 

?M 00) a% 0) =--- 
a? aZ (18) 

F(<, 0) = 0. (19) 

It is evident that the outer solution is com- 
pletely described by equations (8) and (9) 
together with conditions (15) and (19), and that 
these are independent of the inner solution. 
Thus, the procedure is to first obtain the outer 
solution for F(& z) and O(& z), and then, 
making use of these results, to evaluate the 
inner solution from equations (10) and (14) 
together with conditions (16), (17) and (18). 
In this regard, the integral appearing in equation 
(14) may be rephrased as 

7 04(& t) E,(t) dt = 204(& 0) - f3p; 
0 

(20) 

by setting z = 0 in equation (9) and noting 
equation (19). 

To express the surface heat transfer in terms of 
the temperature functions 19(<, ?) and O(<, z), 
it will be convenient to consider separately the 
conduction and radiation contributions. If use 
is made of the conventional definition of the 
Nusselt number, then 

Nu = qcwx 
k(T, - T,) = ,.Eo 

and in dimensionless form the conduction heat 
transfer is given as 

NU 5+ a9 
o,=- 0 J2(& - 1) a? 

(21) ?=O 

Following [l, 21, the surface radiation heat 
transfer is expressed by 

qRw ----= 
0T4, 

0: - 2 $S’(& t) E&) dt (22) 

with terms of 0 [,/(2Pr N)] deleted. 

In summary, the present formulation for 
N < 1 has reduced the initial integro-differential 
equations (6) and (7) to two simpler systems of 
equations; equations (8) and (9), which are still 
integro-differential but are of lower order; and 
equations (10) and (14), which are solely dif- 
ferential equations. The solution of these re- 
duced equations is, however, still not an easy 
task. In the following an illustrative solution is 
presented which is restricted to small values of 
the interaction parameter <. 

SOLUTION FOR SMALL ( 

As an example of the preceding formulation 
for N 4 1, a solution, which is restricted to 
second-order interactions of radiation with 
convection, will be illustrated. 

Analysis 
Letting 

84-i * 
l-= 8, 

( > 
solutions of equations (8) and (9) may be 
expressed as 

F(5, z) = C?[F,(z) + F,(z) 5’ + . .] (23) 

@(IL 7) = 1 + (e, - 1) r2<+[Go(z) 

+ G,(z) 5” + . .] (24) 

for which the functions F,(z), F,(z), G,(r), 
and G,(z) are described by the ordinary dif- 
ferential equations 

F,F;; - (FL)’ - $Go 

2F,Gb - FbG, = - +E2(~) 1 
(25) 

F,F;’ - $F;F; + $F;F, = - $G, 

FoGi - FbG, = iF;G, - $F,Gb 

1 

(26) 

+ f [2G, - 7 G,(t) E,(lz - tl) dt]. 
0 

The boundary conditions follows from equations 
(15) and (19) to be 

F,(O) = F,(O) = 0 

> 
(27) 

Go(m) = G,(m) = F;(m) = F;(m) = 0. 
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Turning next to the inner region, solutions 
of equations (10) and (14) may be written as 

f(L f) = 25%&V) + fi(V) r<’ 

+ fi(?/) r’t+ + .] W) 

Nr, 7) = 1 + (0, - 1) [&J(rl) + fl,(vl) rt+ 

+ 02(q) P<” + . .] (29) 

where 

q=“= @AT a y 

t+ ( > 
7 2’ 

One may note that q is the similarity variable 
for no radiation interaction; that is, equations 
(28) and (29) constitute an expansion about 
the no-interaction solution, and this is compat- 
ible with the physical interpretation of <. Upon 
substituting equations (28) and (29) into equa- 
tions (10) and (14), one obtains the ordinary 
differential equations 

fb” + 3fafb’ - 2(f$ = 

1 
x Pro; 

Ae;’ + 3foe; - +fbe, = - yfieb 1 (31) 

ii e;l + 3foe; - 4 f be, = - 4+f,e; 
/ 

(32) 

- yf2eb + +f;e,. J 
From equations (16), (17), and (18) together 
with (23) and (24), the boundary conditions are 

fO(O) =f1(0) =f2(0) =fb(O) =f;(o) 
=fi(O) = 0 

e,(o) = 1, e,(o) = e,(o) = 0 
fb(m) = o, f;(m) = 3&(O), 

f;(a) = o 
e,(a) = e,(m) = 0, 

e,w = G,(o). J 

Note that with restriction to the terms con- 
sidered in equations (28) and (29), knowledge 
of F,(z) and G,(z) is not required. 

As would be expected, the functions fO(q) and 
t!&,(q) correspond to the free convection boundary 
layer in the absence of radiation interaction. 
Before proceeding, it is of interest to discuss the 
separate mechanisms by which radiation alters 
the free convection boundary layer (i.e. the 
inner region), and to illustrate how each of these 
enter into the expansions in powers of 0 of 
equations (28) and (29). There are three such 
mechanisms, and these are as follows : 

(1) The induced velocity at the outer edge 
of the boundary layer. From equations (4). 
(18) and (23) it is seen that this is a first-order 
radiation effect, since it initially appears as a 
term of order t+. 

(2) The variable temperature O([, 0) imposed 
at the outer edge of the boundary layer. Since 
this first occurs as a tJ* term, as may be noted 
from equation (24), it is consequently a second- 
order radiation effect. 

(3) The absorption and emission of radiant 
energy within the boundary layer. From equa- 
tions (14) and (24), it is found that absorption 
and emission correspond to terms of order l, 
and this third-order effect does not appear in the 
present second-order analysis. 

It should be noted that the temperature ratio 
Bw = T,,IT, does not appear in equations (31) 
and (32). If, however, third-order terms were 
retained in equations (28) and (29) the non- 
linear absorption-emission term would intro- 
duce 8, into the differential equations describing 

fh) and e,(v). 
In terms of the present second-order analysis, 

the conduction heat transfer is found by com- 
bining equations (21) and (29) so that 

Nu 

o’= - $ [e;(o) + e;(o) rp 
+ e;(o)r2p + . ..I. (33) 

With regard to radiation transfer from the plate 
surface, one finds that 
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qRw 

4-4, - T4,) 
m 

s G,(t)&(t) dt + . . (34) 

0 

as given by equations (22) and (24). 

Numerical results 
The present second-order solution requires 

the integration of equations (25), (31), and (32), 
and this has been accomplished numerically on 
an IBM 1620 computer. In the case of equations 
(25) a backward integration was employed, since 
two of the three boundary conditions are located 
at infinity. The backward integration was addi- 
tionally necessary since equations (25) indicate 
a possible singularity at the origin. Figure 3 
illustrates Fb and Go, and the quantities F;(O) 

I.2 5 

0.25 

0 
0 0.5 I.0 I.5 2.0 2.5 3.0 

i = KY 

FIG. 3. The functions F, and G,. 

and G,(O), which appear in the boundary condi- 
tions for equations (31) and (32), were found to 
have the values 

Fb(O) = 1.23, G,(O) = 1.01. 

It should be noted that equations (25) are inde- 
pendent of Prandtl number. 

Equations (31) and (32) have been solved 
numerically for Pr = 1.0 using a conventional 
forward integration together with the tables of 
fo(q) and e,(v) given in [S]. These solutions are 
illustrated in Figs. 4 and 5, and the pertinent 
numerical results are 

0 b(O) = -0567, e;(O) = -0.072, 

e;(o) = 0.091. (35) 

Now, to evaluate the surface radiation heat 
transfer, the result 

7 G,(t) E,(t) dt = 0.167 
0 

was obtained by numerical integration, and 
from equation (34) 

qRw 

dT: - T:) 
= 1 _!p + ... (36) 

The first term in this equation simply represents 
radiation exchange between the plate surface 
and an infinite isothermal gas at temperature 
T,, since the emissivity of an infinite isothermal 
gas is unity. The second term in equation (36) 
represents a first-order correction due to the 
fact that the gas is actually nonisothermal. 

On combining equations (33) and (35), the 
conduction heat transfer is described by 

NlA 
- = 0.401 + o.o51r5+ 
(Gr)” 

- 0.064r2<+ + . . . (37) 

for Pr = 1.0. The first term in this expression 
denotes free convection in the absence of any 
radiation interaction. The first-order interaction 
term, O.O51r5*, is the result of the induced 
motion at the outer edge of the free convection 
boundary layer, and this “forced convection” 
effect results in an increase in convection heat 
transfer. The second-order interaction term in 
equation (37) includes both the second-order 
induced motion effect together. with the lirst- 
order influence of the variable temperature 
imposed at the outer edge of the boundary layer. 
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FIG. 4. The functionsJ”b,/‘,, and_& for Pr = 1. 

I I I I I I I 

FIG. 5. The functions U,, O,, and 0, for I+ = 1 
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R&suns&Les equations sans dimensions de la couche limite qui decrivent la convection naturelle d’un 
fluide absorbant er Cmetteur montre que le probleme peut ttre traitt comme un probltme de perturbation 
singuliere. 

Ce traitement s’applique convenablemant si le parametre qui caracttrise l’importance relative de la 
conduction par rapport au transport de chaleur par rayonnement dans le fluide, est petit, On a montre 
que c’est le cas pour plusieurs gaz typiques. 

Le probleme de perturbation singulibre est formule pour la convection naturelle laminaire d’un gaz 
gaz gris le long d’une plaque verticale, noire et isotherme. Une solution des equations resultantes est 
prisentec comme exemple pour des interactions du second ordre entre le rayonnement et la convection 
naturehe. 

Zrtsanunenfassong-Die dimensionslosen Grenzschichtgleichungen, welche die freie Konvektion eines 
strahlungsabsorbierenden emittierenden Mediums beschreiben, zeigen, dass das Problem als ein singullres 
sttlrungsproblem behandelt werden kann. Speziell trifft dies zu, wenn der Parameter, der die relative 
Bedeutung des Warmestransports durch Leitung gegenting gegeniiber der Strahlung charakterisiert, klein 
ist. Fur verschiedene typische Case wird das bestltigt. Das singullre Strijrungsproblem wird formuliert fur 
die laminare freie Konvektion eines grauen Gases an einer senkrechten, schwarzen, isothermen Platte. 
Eine anschauliche Liisung der resultierenden Gleichungen ist angegeben fiir Wechselwirkungen zweiter 

Ordnung zwischen Strahlung und freier Konvektion. 

AsiHoTaqHa-Ananua 6eapaaMepHbIx ypamieIniB norpanwsHoro cnon npri ~~060~~08 
KoHBeKqm B Many9alolrIe-nornoqa~qe~ cpene nonaabmaeT, 4TO aagasn TaKOrO Tuna 
MOWHO peLUaTb M‘.?TOAOM eAIlHWiHOr0 BO3MJ'lrleHHFI. B WCTHOCTII, 3TOT MeTOR IIpilMeHHM 
ASH cnysan nuaunx anaseunfi napaaerpa, xapattTepaayromer0 0TnocuTenbuoe cooTnoroenne 
TeIIJIOllpOBO~HOCTA II JIJ'WCTOI'O TeIIJIOO6MeHa. CIIpaBeAJIABOCT 3TOrO IIOK333HEl AJIFI HeC- 
KOJIbKMX TIiIIHYHbIX r330B. C@OpMyJIPfpOBaHa 33AaYa 0 eAAHWlHOM BO3MyUeHAIi AJIH JIaMPI- 
HapHOi CB060AHOti KOHBeKI(MM B CepOti raaoo6paanoti cpene BAOJIb BepTHKaJIbHOfi YepHOti 
uaoTepMusecnoti nnacTnubl. B KaqecTne npauepa npn~0AonuTcn peruenne nonyseriabrx 

J'paBHeHIlfi AJIH B3aHMOAefiCTBd H3JIyWHEIR HCB060AHOti KOHBeKIJMM BTOPOI'O IIOpHAKa. 


